Evaluation of Dispersion Forecasts Driven by Atmospheric Model Output at Coarse and Fine Resolution

Author:

Nachamkin Jason E.1,Cook John1,Frost Mike1,Martinez Daniel2,Sprung Gary2

Affiliation:

1. Naval Research Laboratory, Monterey, California

2. Computer Sciences Corporation, Monterey, California

Abstract

Abstract Lagrangian parcel models are often used to predict the fate of airborne hazardous material releases. The atmospheric input for these integrations is typically supplied by surrounding surface and upper-air observations. However, situations may arise in which observations are unavailable and numerical model forecasts may be the only source of atmospheric data. In this study, the quality of the atmospheric forecasts for use in dispersion applications is investigated as a function of the horizontal grid spacing of the atmospheric model. The Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) was used to generate atmospheric forecasts for 14 separate Dipole Pride 26 trials. The simulations consisted of four telescoping one-way nested grids with horizontal spacings of 27, 9, 3, and 1 km, respectively. The 27- and 1-km forecasts were then used as input for dispersion forecasts using the Hazard Prediction Assessment Capability (HPAC) modeling system. The resulting atmospheric and dispersion forecasts were then compared with meteorological and gas-dosage observations collected during Dipole Pride 26. Although the 1-km COAMPS forecasts displayed considerably more detail than those on the 27-km grid, the RMS and bias statistics associated with the atmospheric observations were similar. However, statistics from the HPAC forecasts showed the 1-km atmospheric forcing produced more accurate trajectories than the 27-km output when compared with the dosage measurements.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

1. Baldwin, M. E., and J. S.Kain, 2004: Examining the sensitivity of various performance measures. Preprints, 17th Conf. on Probability and Statistics in the Atmospheric Sciences, Seattle, WA, Amer. Meteor. Soc., CD-ROM, 2.9.

2. Design of the Navy’s multivariate optimum interpolation analysis system.;Barker;Wea. Forecasting,1992

3. Simulating convective events using a high-resolution mesoscale model.;Bernardet;J. Geophys. Res.,2000

4. Biltoft, C. A. , 1998: Dipole Pride 26: Phase II of Defense Special Weapons Agency transport and dispersion model validation. DPG Doc. DPG-FR-98-001, prepared for Defense Threat Reduction Agency by Meteorology and Obscurants Divisions, West Desert Test Center, U.S. Army Dugway Proving Ground, Dugway, UT, 77 pp.

5. A new intensity-scale approach for the verification of spatial precipitation forecasts.;Casati;Meteor. Appl.,2004

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3