Circulation and Transport in the Western Boundary Currents at Cape Farewell, Greenland

Author:

Holliday N. P.1,Bacon S.1,Allen J.1,McDonagh E. L.1

Affiliation:

1. National Oceanography Centre, Southampton, Southampton, United Kingdom

Abstract

Abstract The circulation and volume transports in the western boundary currents around Cape Farewell, Greenland, are derived from full-depth hydrographic and velocity measurements from August–September 2005. The western boundary currents from surface to seafloor transport 40.5 ± 8.1 Sv (Sv ≡ 106 m3 s−1) southward in the Irminger Sea, and 53.8 ± 10.8 Sv northward in the Labrador Sea. The Deep Western Boundary Current (DWBC, defined as water with potential density greater than 27.80 kg m−3) transports 12.3 ± 2.5 Sv southward in the Irminger Sea. The deep water transport is reduced south of Cape Farewell, where it changes flow direction from southward to northward (the south corner). At a section over the Eirik Ridge, a bathymetric feature extending southwest of Cape Farewell, the DWBC transports 8.7 ± 1.7 Sv westward. The reduction in transport at the south corner is associated with decreased velocities within the deepest layers and the volumetric loss of the most saline deep water types. The observations suggest that the paths of the shallow and deep western boundary currents diverge at the south corner. Downstream in the eastern Labrador Sea the deep water transport is increased to 19.7 ± 3.9 Sv northward, with the addition of recirculating denser deep waters. The representativeness of the results from the semisynoptic survey is discussed with reference to companion current meter measurements of the DWBC.

Publisher

American Meteorological Society

Subject

Oceanography

Reference41 articles.

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overturning in the subpolar North Atlantic: a review;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-10-23

2. Lagrangian Overturning Pathways in the Eastern Subpolar North Atlantic;Journal of Climate;2023-02-01

3. Overflow water pathways in the North Atlantic;Progress in Oceanography;2022-11

4. Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability;Geophysical Research Letters;2022-10-25

5. ICON‐O: The Ocean Component of the ICON Earth System Model—Global Simulation Characteristics and Local Telescoping Capability;Journal of Advances in Modeling Earth Systems;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3