Bathymetry-Aware Mesoscale Eddy Parameterizations across Upwelling Slope Fronts: A Machine Learning–Augmented Approach

Author:

Xie Chenyue1,Wei Huaiyu1,Wang Yan12ORCID

Affiliation:

1. a Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China

2. b Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China

Abstract

Abstract Mesoscale eddy buoyancy fluxes across continental slopes profoundly modulate the boundary current dynamics and shelf–ocean exchanges but have yet to be appropriately parameterized via the Gent–McWilliams (GM) scheme in predictive ocean models. In this work, we test the prognostic performance of multiple GM variants in noneddying simulations of upwelling slope fronts that are commonly found along the subtropical continental margins. The tested GM variants range from a set of constant eddy buoyancy diffusivities to recently developed energetically constrained, bathymetry-aware diffusivities, whose implementation is augmented by an artificial neural network (ANN) serving to predict the mesoscale eddy energy based on the topographic and mean flow quantities online. In addition, an ANN is employed to parameterize the cross-slope eddy momentum flux (EMF) that maintains a barotropic flow field analogous to that in an eddy-resolving model. Our tests reveal that noneddying simulations employing the bathymetry-aware forms of the Rhines scale–based scheme and GEOMETRIC scheme can most accurately reproduce the heat contents and along-slope baroclinic transports as those in the eddy-resolving simulations. Further analyses reveal certain degrees of physical consistency in the ANN-inferred eddy energy, which tends to grow (decay) as isopycnal slopes are steepened (flattened), and in the parameterized EMF, which exhibits the correct strength of shaping the flow baroclinicity if a bathymetry-aware GM variant is jointly used. These findings provide a recipe of GM variants for use in noneddying simulations with continental slopes and highlight the potential of machine learning techniques to augment physics-based mesoscale eddy parameterization schemes. Significance Statement This study evaluates the predictive skill of parameterization schemes of water mass transports induced by ocean mesoscale eddies across continental slopes. Correctly parameterizing these transports in noneddying ocean models (e.g., ocean climate models) is crucial for predicting the ocean circulation and shelf–ocean exchanges. This work highlights the importance of bathymetric effects on eddy transports, as parameterization schemes that account for the influence of a sloping seafloor outperform those developed specifically for a flat-bottomed ocean. This work also highlights the efficacy of machine learning techniques to augment physics-based mesoscale eddy parameterization schemes, for instance, by estimating the mesoscale eddy energy online to realize energy-dependent parameterization schemes in noneddying simulations.

Funder

Research Grants Council of Hong Kong

Publisher

American Meteorological Society

Subject

Oceanography

Reference112 articles.

1. Diagnostics of isopycnal mixing in a circumpolar channel;Abernathey, R.,2013

2. Dynamics of advection-driven upwelling over a shelf break submarine canyon;Allen, S. E.,2010

3. Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach;Aluie, H.,2018

4. The GM + E closure: A framework for coupling backscatter with the Gent and McWilliams parameterization;Bachman, S. D.,2019

5. Evaluation of a scalar eddy transport coefficient based on geometric constraints;Bachman, S. D.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3