An Extreme Precipitation Categorization Scheme and its Observational Uncertainty over the Continental United States

Author:

Slinskey Emily A.1,Loikith Paul C.1,Waliser Duane E.2,Goodman Alexander2

Affiliation:

1. Department of Geography, Portland State University, Portland, Oregon

2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

Abstract An extreme precipitation categorization scheme, used to temporally and spatially visualize and track the multiscale variability of extreme precipitation climatology, is applied over the continental United States. The scheme groups 3-day precipitation totals exceeding 100 mm into one of five precipitation categories, or “P-Cats.” To demonstrate the categorization scheme and assess its observational uncertainty across a range of precipitation measurement approaches, we compare the climatology of P-Cats defined using in situ station data from the Global Historical Climatology Network-Daily (GHCN-D); satellite-derived data from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA); gridded station data from the Parameter-Elevation Regression on Independent Slopes Model (PRISM); global reanalysis from the Modern-Era Retrospective Analysis for Research and Applications, version 2; and regional reanalysis from the North American Regional Reanalysis. While all datasets capture the principal spatial patterns of P-Cat climatology, results show considerable variability across the suite in frequency, spatial extent, and magnitude. Higher-resolution datasets, PRISM and TMPA, most closely resemble GHCN-D and capture a greater frequency of high-end P-Cats relative to the lower-resolution products. When all datasets are rescaled to a common coarser grid, differences persist with datasets originally constructed at a high resolution maintaining a higher frequency and magnitude of P-Cats. Results imply that dataset choice matters when applying the P-Cat scheme to track extreme precipitation over space and time. Potential future applications of the P-Cat scheme include providing a target for climate model evaluation and a basis for characterizing future change in extreme precipitation as projected by climate model simulations.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3