Barotropic Instability across the Moat and Inner Eyewall Dissipation: A Numerical Study of Hurricane Wilma (2005)

Author:

Lai Tsz-Kin1,Menelaou Konstantinos1,Yau M. K.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Abstract

Abstract Radar imagery of some double-eyewall tropical cyclones shows that the inner eyewalls become elliptical prior to their dissipation. These elliptical features indicate that the barotropic instability (BI) across the moat (aka, type-2 BI) may play a role in the process. To investigate the mechanism for dissipation, a WRF simulation of Hurricane Wilma (2005) is performed. The results reveal an elliptical elongation of the inner eyewall and a change in the structure of the radial flow from wavenumber (WN) 1 to WN 2 at the lower levels. A linear stability analysis as well as idealized nonlinear experiments using a nondivergent barotropic vorticity model initialized with the vorticity fields before the change in the dominant wavenumber of the radial flow are presented with the results supporting the presence of a type-2 BI at the lower levels. The accompanying WN-2 radial flow is also found to dilute the vorticity within the inner eyewall and the eye. However, this dilution is not seen at higher levels as the type-2 BI becomes weak and short lived at the middle levels and reaches its weakest strength at the upper levels. This phenomenon is traced to the fact that a higher growth rate comes with a narrower moat for type-2 BI. As the outward slope of the outer eyewall is larger than that of the inner eyewall, the moat width increases with height so that the growth rate decreases with height. The results presented here thus highlight the potential role played by the barotropic instability across the moat in inner eyewall dissipation.

Funder

Hydro-Québec

Natural Sciences and Engineering Research Council of Canada

McGill University

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3