A Turbulence Scheme with Two Prognostic Turbulence Energies

Author:

Ďurán Ivan Bašták1,Geleyn Jean-François2,Váňa Filip3,Schmidli Juerg1,Brožková Radmila4

Affiliation:

1. Goethe University, Frankfurt, Germany

2. CNRM Météo-France, Toulouse, France

3. ECMWF, Reading, United Kingdom

4. Czech Hydro-Meteorological Institute, Prague, and Global Change Research Institute, Academy of Sciences of the Czech Republic, Brno, Czech Republic

Abstract

A new turbulence scheme with two prognostic energies is presented. The scheme is an extension of a turbulence kinetic energy (TKE) scheme following the ideas of Zilitinkevich et al. but valid for the whole stability range and including the influence of moisture. The second turbulence prognostic energy is used only for a modification of the stability parameter. Thus, the scheme is downgradient, and the turbulent fluxes are proportional to the local gradients of the diffused variables. However, the stability parameter and consequently the turbulent exchange coefficients are not strictly local anymore and have a prognostic character. The authors believe that these characteristics enable the scheme to model both turbulence and clouds in the planetary boundary layer. The two-energy scheme was tested in three idealized single-column model (SCM) simulations, two in the convective boundary layer and one in the stable boundary layer. Overall, the scheme performs better than the standard TKE schemes. Compared to the TKE schemes, the two-energy scheme shows a more continuous behavior in time and space and mixes deeper in accordance with the LES results. A drawback of the scheme is that the modeled thermals tend to be too intense and too infrequent. This is due to the particular cutoff formulation of the chosen length-scale parameterization. Long-term three-dimensional global simulations show that the turbulence scheme behaves reasonable well in a full atmospheric model. In agreement with the SCM simulations, the scheme tends to overestimate cloud cover, especially at low levels.

Funder

Goethe-Universität Frankfurt am Main

Czech Hydrometeorological Institute

European Centre for Medium-Range Weather Forecasts

CNRM Meteo-France

Czech Ministry of Education, Youth and Sports

Bundesministerium für Verkehr und Digitale Infrastruktur

Regional Cooperation for Limited Area modeling in Central Europe

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3