Freshwater Flux (FWF)-Induced Oceanic Feedback in a Hybrid Coupled Model of the Tropical Pacific

Author:

Zhang Rong-Hua1,Busalacchi Antonio J.1

Affiliation:

1. Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract The impacts of freshwater flux (FWF) forcing on interannual variability in the tropical Pacific climate system are investigated using a hybrid coupled model (HCM), constructed from an oceanic general circulation model (OGCM) and a simplified atmospheric model, whose forcing fields to the ocean consist of three components. Interannual anomalies of wind stress and precipitation minus evaporation, (P − E), are calculated respectively by their statistical feedback models that are constructed from a singular value decomposition (SVD) analysis of their historical data. Heat flux is calculated using an advective atmospheric mixed layer (AML) model. The constructed HCM can well reproduce interannual variability associated with ENSO in the tropical Pacific. HCM experiments are performed with varying strengths of anomalous FWF forcing. It is demonstrated that FWF can have a significant modulating impact on interannual variability. The buoyancy flux (QB) field, an important parameter determining the mixing and entrainment in the equatorial Pacific, is analyzed to illustrate the compensating role played by its two contributing parts: one is related to heat flux (QT) and the other to freshwater flux (QS). A positive feedback is identified between FWF and SST as follows: SST anomalies, generated by El Niño, nonlocally induce large anomalous FWF variability over the western and central regions, which directly influences sea surface salinity (SSS) and QB, leading to changes in the mixed layer depth (MLD), the upper-ocean stability, and the mixing and the entrainment of subsurface waters. These oceanic processes act to enhance the SST anomalies, which in turn feedback to the atmosphere in a coupled ocean–atmosphere system. As a result, taking into account anomalous FWF forcing in the HCM leads to an enhanced interannual variability and ENSO cycles. It is further shown that FWF forcing is playing a different role from heat flux forcing, with the former acting to drive a change in SST while the latter represents a passive response to the SST change. This HCM-based modeling study presents clear evidence for the role of FWF forcing in modulating interannual variability in the tropical Pacific. The significance and implications of these results are further discussed for physical understanding and model improvements of interannual variability in the tropical Pacific ocean–atmosphere system.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3