Quantifying the Rain-Shadow Effect: Results from the Peak District, British Isles

Author:

Stockham Alexander J.1,Schultz David M.2,Fairman Jonathan G.2,Draude Adam P.3

Affiliation:

1. University of Sheffield, Sheffield, United Kingdom

2. Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

3. School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

Abstract

AbstractAlthough rain shadows (i.e., leeside reductions of precipitation downwind of orography) are commonly described in textbooks, quantitative climatologies of the rain-shadow effect are rare. To test quantitatively a classic rain-shadow locality of the Peak District, United Kingdom, precipitation from 54 observing stations over 30 years (1981–2010) are examined. Under 850-hPa westerlies, annual and daily precipitation amounts are on average higher in Manchester in the west and the Peak District than in Sheffield in the east. More precipitation falls—and falls more frequently—frequently in Manchester than Sheffield on 197 westerly flow days annually. In contrast, more precipitation falls—and falls more frequently—in Sheffield than Manchester on 28 easterly flow days annually. These bulk precipitation statistics support a climatological rain shadow. However, when individual days are investigated, only 17% of westerly flow days occur where daily rainfall data might exhibit the rain-shadow effect (defined here as Manchester with precipitation and Sheffield with no precipitation). In contrast, only 10% of easterly flow days occur where daily rainfall data might exhibit the rain-shadow effect (Sheffield with precipitation and Manchester with no precipitation). Thus, westerly winds are more likely to exhibit a rain-shadow effect than easterly winds. Although the distribution of precipitation observed across the Peak District can sometimes be explained by the rain-shadow effect, the occurrence of the rain-shadow effect by our admittedly strict definition is not as frequent as one might expect to explain the local precipitation climate for which it has sometimes been previously credited. Thus, an attempt to understand the climatological relevance of the rain-shadow effect from one location reveals ambiguity in the definition of a rain shadow and in its interpretation from real rainfall data.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3