Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World

Author:

Vannitsem Stéphane1,Bremnes John Bjørnar2,Demaeyer Jonathan1,Evans Gavin R.3,Flowerdew Jonathan3,Hemri Stephan4,Lerch Sebastian5,Roberts Nigel6,Theis Susanne7,Atencia Aitor8,Ben Bouallègue Zied9,Bhend Jonas4,Dabernig Markus8,De Cruz Lesley10,Hieta Leila11,Mestre Olivier12,Moret Lionel4,Plenković Iris Odak13,Schmeits Maurice14,Taillardat Maxime12,Van den Bergh Joris10,Van Schaeybroeck Bert10,Whan Kirien14,Ylhaisi Jussi11

Affiliation:

1. Royal Meteorological Institute of Belgium, and European Meteorological Network (EUMETNET), Brussels, Belgium

2. Norwegian Meteorological Institute, Oslo, Norway

3. Met Office, Exeter, United Kingdom

4. Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich, Switzerland

5. Institute for Stochastics, Karlsruhe Institute of Technology, Karlsruhe, Germany

6. MetOffice@Reading, Met Office, United Kingdom

7. Deutscher Wetterdienst, Offenbach, Germany

8. Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

9. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

10. Royal Meteorological Institute of Belgium, Brussels, Belgium

11. Finnish Meteorological Institute, Helsinki, Finland

12. Météo-France, CNRM-UMR 3589, Toulouse, France

13. Croatian Meteorological and Hydrological Service, Zagreb, Croatia

14. Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands

Abstract

AbstractStatistical postprocessing techniques are nowadays key components of the forecasting suites in many national meteorological services (NMS), with, for most of them, the objective of correcting the impact of different types of errors on the forecasts. The final aim is to provide optimal, automated, seamless forecasts for end users. Many techniques are now flourishing in the statistical, meteorological, climatological, hydrological, and engineering communities. The methods range in complexity from simple bias corrections to very sophisticated distribution-adjusting techniques that incorporate correlations among the prognostic variables. The paper is an attempt to summarize the main activities going on in this area from theoretical developments to operational applications, with a focus on the current challenges and potential avenues in the field. Among these challenges is the shift in NMS toward running ensemble numerical weather prediction (NWP) systems at the kilometer scale that produce very large datasets and require high-density high-quality observations, the necessity to preserve space–time correlation of high-dimensional corrected fields, the need to reduce the impact of model changes affecting the parameters of the corrections, the necessity for techniques to merge different types of forecasts and ensembles with different behaviors, and finally the ability to transfer research on statistical postprocessing to operations. Potential new avenues are also discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3