Argon as a Tracer of Cross-Isopycnal Mixing in the Thermocline

Author:

Henning Cara C.1,Archer David2,Fung Inez1

Affiliation:

1. University of California, Berkeley, Berkeley, California

2. University of Chicago, Chicago, Illinois

Abstract

Abstract Noble gases such as argon are unaffected by chemical reactions in the ocean interior, but a number of physical mechanisms can lead to measurable sea level atmospheric disequilibrium in subsurface waters of the ocean. One such mechanism is the mixing of waters of different temperatures, which can lead to supersaturation in the ocean interior. The authors simulate the supersaturation mixing signature in the thermocline in a global ocean general circulation model, Parallel Ocean Program model, version 1.4 (POP 1.4). In contrast to existing mixing diagnostics such as dye tracers or microstructure measurements, which yield the local, recent rate of diabatic mixing, argon disequilibrium traces an integrated lifetime history of subsurface mixing. A theoretical model of the subtropical Atlantic Ocean gyre is built, based on the competing time scales of horizontal and vertical mixing, that agrees well with the full general circulation model argon supersaturation gradient in the thermocline. These results suggest that gyre-scale argon data from the real ocean could be similarly interpreted. The variation of the argon supersaturation with diffusivity in the equatorial Pacific Ocean is also investigated.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3