The Sensitivity of Simulated Storm Structure, Intensity, and Precipitation Efficiency to Environmental Temperature

Author:

McCaul Eugene W.1,Cohen Charles1,Kirkpatrick Cody2

Affiliation:

1. Universities Space Research Association, Huntsville, Alabama

2. University of Alabama in Huntsville, Huntsville, Alabama

Abstract

Abstract Prior parameter space studies of simulated deep convection are extended to embrace shifts in the environmental temperature. Within the context of the parameter space study design, shifts in this environmental temperature are roughly equivalent to changes in the ambient precipitable water (PW). Two series of simulations are conducted: one in a warm environmental regime that is associated with approximately 60 mm of precipitable water, and another with temperatures 8°C cooler, so that PW is reduced to roughly 30 mm. The sets of simulations include tests of the impact of changes in the buoyancy and shear profile shapes and of changes in mixed- and moist layer depths, all of which have been shown to be important in prior work. Simulations discussed here also feature values of surface-based pseudoadiabatic convective available potential energy (CAPE) of 800, 2000, or 3200 J kg−1, and a single semicircular hodograph having a radius of 12 m s−1, but with variable vertical shear. The simulations reveal a consistent trend toward stronger peak updraft speeds for the cooler temperature (reduced PW) cases, when the other environmental parameters are held constant. Roughly comparable increases in updraft speeds are noted for all combinations of mixed- and moist layer depths. These increases in updraft strength evidently result from both the reduction of condensate loading aloft and the lower altitudes at which the latent heat release by freezing and deposition commences in the cooler, low-PW environments. As expected, maximum storm precipitation rates tend to diminish as PW is decreased, but only slightly, and by amounts not proportionate to the decrease in PW. The low-PW cases thus actually feature larger environment-relative precipitation efficiency than do the high-PW cases. In addition, more hail reaches the surface in the low-PW cases because of reduced melting in the cooler environments. Although these experiments were designed to feature specified amounts of pseudoadiabatic CAPE, it appears that reversible CAPE provides a more accurate prediction of updraft strength, at least for the storms discussed here.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference31 articles.

1. The computation of equivalent potential temperature.;Bolton;Mon. Wea. Rev.,1980

2. A reevaluation of ice-liquid water potential temperature.;Bryan;Mon. Wea. Rev.,2004

3. Resolution requirements for the simulation of deep moist convection.;Bryan;Mon. Wea. Rev.,2003

4. Predicting supercell motion using a new hodograph technique.;Bunkers;Wea. Forecasting,2000

5. Storm and Cloud Dynamics.;Cotton,1989

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3