Effective Isentropic Diffusivity of Tropospheric Transport

Author:

Chen Gang1,Plumb Alan2

Affiliation:

1. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

2. Program in Atmospheres, Oceans and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

Abstract Tropospheric transport can be described qualitatively by the slow mean diabatic circulation and rapid isentropic mixing, yet a quantitative understanding of the transport circulation is complicated, as nearly half of the isentropic surfaces in the troposphere frequently intersect the ground. A theoretical framework for the effective isentropic diffusivity of tropospheric transport is presented. Compared with previous isentropic analysis of effective diffusivity, a new diagnostic is introduced to quantify the eddy diffusivity of the near-surface isentropic flow. This diagnostic also links the effective eddy diffusivity directly to a diffusive closure of eddy fluxes through a finite-amplitude wave activity equation. The theory is examined in a dry primitive equation model on the sphere. It is found that the upper troposphere is characterized by a diffusivity minimum at the jet’s center with enhanced mixing at the jet’s flanks and that the lower troposphere is dominated by stronger mixing throughout the baroclinic zone. This structure of isentropic diffusivity is generally consistent with the diffusivity obtained from the geostrophic component of the flow. Furthermore, the isentropic diffusivity agrees broadly with the tracer equivalent length obtained from either a spectral diffusion scheme or a semi-Lagrangian advection scheme, indicating that the effective diffusivity of tropospheric transport is largely dictated by large-scale stirring rather than details of the small-scale diffusion acting on the tracers.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3