A Study of the Characteristics and Assimilation of Retrieved MODIS Total Precipitable Water Data in Severe Weather Simulations

Author:

Chen Shu-Hua1,Zhao Zhan2,Haase Jennifer S.3,Chen Aidong2,Vandenberghe Francois4

Affiliation:

1. Department of Land, Air, and Water Resources, University of California, Davis, Davis, California, and Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan

2. Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

3. Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana

4. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract This study determined the accuracy and biases associated with retrieved Moderate Resolution Imaging Spectroradiometer (MODIS) total precipitable water (TPW) data, and it investigated the impact of these data on severe weather simulations using the Weather Research and Forecast (WRF) model. Comparisons of MODIS TPW with the global positioning system (GPS) TPW and radiosonde-derived TPW were carried out. The comparison with GPS TPW over the United States showed that the root-mean-square (RMS) differences between these two datasets were about 5.2 and 3.3 mm for infrared (IR) and near-infrared (nIR) TPW, respectively. MODIS IR TPW data were overestimated in a dry atmosphere but underestimated in a moist atmosphere, whereas the nIR values were slightly underestimated in a dry atmosphere but overestimated in a moist atmosphere. Two cases, a severe thunderstorm system (2004) over land and Hurricane Isidore (2002) over ocean, as well as conventional observations and Special Sensor Microwave Imager (SSM/I) retrievals were used to assess the impact of MODIS nIR TPW data on severe weather simulations. The assimilation of MODIS data has a slightly positive impact on the simulated rainfall over Oklahoma for the thunderstorm case, and it was able to enhance Isidore’s intensity when the storm track was reasonably simulated. The use of original and bias-corrected MODIS nIR TPW did not show significant differences from both case studies. In addition, SSM/I data were found to have a positive impact on both severe weather simulations, and the impact was comparable to or slightly better than that of MODIS data.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3