Multipeak Raindrop Size Distribution Observed by UHF/VHF Wind Profilers during the Passage of a Mesoscale Convective System

Author:

Radhakrishna B.1,Rao T. Narayana1

Affiliation:

1. National Atmospheric Research Laboratory, Gadanki, India

Abstract

Abstract The Indian Mesosphere–Stratosphere–Troposphere radar (IMSTR), Lower Atmospheric Wind Profiler (LAWP), and Joss–Waldvogel (JW) disdrometer measurements during the passage of two distinctly different (in terms of total rain and rainfall rate) convective storms are utilized to understand the nature and origin of the multipeak raindrop size distribution (MRDSD). Important issues, such as the preferential stage and height at which bi- or multimodal rain distribution occurs in a mesoscale convective system (MCS) are addressed. For both of the storms, the MRDSD is observed during the transition period from convection to stratiform rain. The pattern and variation of the MRDSD during this period is strikingly similar in both of the storms. The MRDSD is first observed above the freezing level in the presence of heavy riming. The subsequent spectra have shown bimodal distribution below the freezing level, and the bimodality is attributed to the coexistence of ice and supercooled droplets. Interestingly, the bimodal distribution has not varied much with altitude when it is produced because of the coexistence of ice and supercooled droplets. The MRDSD is also observed at few range gates and for a short duration. Such a type of MRDSD is seen during the transition period between decaying and intensifying rain.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference53 articles.

1. Drop-size history during a shower.;Atlas;J. Meteor.,1953

2. Doppler radar characteristics of precipitation at vertical incidence.;Atlas;Rev. Geophys. Space Sci.,1973

3. The effects of filament, sheet, and disk breakup upon the drop spectrum.;Brown;J. Atmos. Sci.,1988

4. Observations of deep convective updrafts in tropical convection and their role in the generation of gravity waves.;Dhaka;J. Meteor. Soc. Japan,2003

5. Raindrop evolution with collision breakup: Theory and models.;Donaldson,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3