Three-Dimensional Idealized Simulations of Barrier Jets along the Southeast Coast of Alaska

Author:

Olson Joseph B.1,Colle Brian A.1

Affiliation:

1. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Abstract

Abstract Three-dimensional idealized simulations using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) down to 6-km grid spacing were performed in order to understand how different ambient conditions (wind speed and direction, stability, and inland cold pool) and terrain characteristics impact barrier jets along the southeastern Alaskan coast. The broad inland terrain of western North America is important in Alaskan jet development, since it rotates the impinging flow cyclonically (more coast parallel) well upstream of the coast, thus favoring more low-level flow blocking while also adding momentum and width to the barrier jet. Near the steep coastal terrain, the largest wind speed enhancement factor (1.9–2.0) in the terrain-parallel direction relative to the ambient onshore-directed wind speed occurs at relatively low Froude numbers (Fr ∼ 0.3–0.4). These low Froude numbers are associated with (10–15 m s−1) ambient wind speeds and wind directions orientated 30°–45° from terrain-parallel. For simulations with an inland cold pool and nearly coast-parallel flow, strong gap outflows develop through the coastal mountain gaps, shifting the largest wind speed enhancement to Fr < 0.2. The widest barrier jets occur with ambient winds oriented nearly terrain-parallel with strong static stability. The gap outflows shift the position of the jet maximum farther offshore from the coast and increase the jet width. The height of the jet maxima is typically located at the top of the shallow gap outflow (∼500 m MSL), but without strong gap outflows, the jet heights are located at the top of the boundary layer, which is higher (lower) for large (small) frictionally induced vertical wind shear and weak (strong) static stability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference42 articles.

1. Deep and shallow quasigeostrophic flow over mountains.;Bannon;Tellus,1986

2. Anelastic semigeostrophic flow over a mountain ridge.;Bannon;J. Atmos. Sci.,1988

3. Southwesterly flows over southern Norway—Mesoscale sensitivity to large-scale wind direction and speed.;Barstad;Tellus,2005

4. Prefrontal and postfrontal boundary layer processes over the ocean.;Bond;Mon. Wea. Rev.,1988

5. Research aircraft observations of the mean and turbulent structure of a low-level jet accompanying a strong storm.;Bond;J. Appl. Meteor.,2002

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3