Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada

Author:

Gauthier Pierre1,Tanguay Monique1,Laroche Stéphane1,Pellerin Simon1,Morneau Josée2

Affiliation:

1. Meteorological Research Division, Environment Canada, Dorval, Québec, Canada

2. Meteorological Service of Canada, Environment Canada, Dorval, Québec, Canada

Abstract

Abstract On 15 March 2005, the Meteorological Service of Canada (MSC) proceeded to the implementation of a four-dimensional variational data assimilation (4DVAR) system, which led to significant improvements in the quality of global forecasts. This paper describes the different elements of MSC’s 4DVAR assimilation system, discusses some issues encountered during the development, and reports on the overall results from the 4DVAR implementation tests. The 4DVAR system adopted an incremental approach with two outer iterations. The simplified model used in the minimization has a horizontal resolution of 170 km and its simplified physics includes vertical diffusion, surface drag, orographic blocking, stratiform condensation, and convection. One important element of the design is its modularity, which has permitted continued progress on the three-dimensional variational data assimilation (3DVAR) component (e.g., addition of new observation types) and the model (e.g., computational and numerical changes). This paper discusses some numerical problems that occur in the vicinity of the Poles where the semi-Lagrangian scheme becomes unstable when there is a simultaneous occurrence of converging meridians and strong wind gradients. These could be removed by filtering the winds in the zonal direction before they are used to estimate the upstream position in the semi-Lagrangian scheme. The results show improvements in all aspects of the forecasts over all regions. The impact is particularly significant in the Southern Hemisphere where 4DVAR is able to extract more information from satellite data. In the Northern Hemisphere, 4DVAR accepts more asynoptic data, in particular coming from profilers and aircrafts. The impact noted is also positive and the short-term forecasts are particularly improved over the west coast of North America. Finally, the dynamical consistency of the 4DVAR global analyses leads to a significant impact on regional forecasts. Experimentation has shown that regional forecasts initiated directly from a 4DVAR global analysis are improved with respect to the regional forecasts resulting from the regional 3DVAR analysis.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference45 articles.

1. Variational quality control.;Andersson;Quart. J. Roy. Meteor. Soc.,1999

2. Evaluation of GPS radio occultation assimilation.;Aparicio;Mon. Wea. Rev.,2007

3. Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system.;Bélair;Mon. Wea. Rev.,2005

4. Chouinard, C., C.Charette, J.Hallé, P.Gauthier, J.Morneau, and R.Sarrazin, 2001: The Canadian 3D-Var analysis scheme on model vertical coordinate. Preprints, 14th Conf. on Numerical Weather Prediction, Fort Lauderdale, FL, Amer. Meteor. Soc., 14–18.

5. The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation.;Côté;Mon. Wea. Rev.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3