Analytical Study of an Isotropic Viscoplastic Sea Ice Model in Idealized Configurations

Author:

Sirven Jérôme1,Tremblay Bruno2

Affiliation:

1. UMR Locean Laboratory (Sorbonne Universités-Université Pierre et Marie Curie, CNRS, IRD, MNHN), Paris, France

2. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Abstract

AbstractAnalytic solutions of a mechanical sea ice model are computed in idealized configurations. They are then used to study the properties of this model. It classically assumes that the ice behaves at large scale as an isotropic viscoplastic medium. The plastic regime is characterized by a Mohr–Coulomb yield curve. The flow rule corresponds to the one used in granular mediums and depends on a parameter δ that characterizes the expansion properties of the medium. Using simple model configurations, this study first shows that a sliding of the ice along the coast must be permitted; otherwise, the model generally has no solution when the plastic regime is active. This study then shows that the viscous regime is reached only if the stress remains nearly uniform over a large area. For a stress having no particular properties, the plastic regime acts everywhere. In this case, the compressive stress may reach the maximum value allowed by the model close to the coastline. The extension of the domain where the compressive stress is at its maximum depends on δ and the direction of the forcing field. Over this domain, the ice behaves as a fluid material with a small negative viscosity. Last, the authors found that neither the existence of the solution nor its unicity are guaranteed in this stationary model. This result does not imply that the unicity is lost in the transient problem; it suggests that the evolution of sea ice depends not only on the forcing, but also on the initial conditions or history of the system.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3