The Stratospheric Extension of the Canadian Global Deterministic Medium-Range Weather Forecasting System and Its Impact on Tropospheric Forecasts

Author:

Charron Martin1,Polavarapu Saroja2,Buehner Mark1,Vaillancourt P. A.1,Charette Cécilien1,Roch Michel1,Morneau Josée3,Garand Louis1,Aparicio Josep M.1,MacPherson Stephen1,Pellerin Simon1,St-James Judy3,Heilliette Sylvain1

Affiliation:

1. Meteorological Research Division, Environment Canada, Dorval, Québec, Canada

2. Meteorological Research Division, Environment Canada, Toronto, Ontario, Canada

3. Canadian Meteorological Centre, Environment Canada, Dorval, Québec, Canada

Abstract

Abstract A new system that resolves the stratosphere was implemented for operational medium-range weather forecasts at the Canadian Meteorological Centre. The model lid was raised from 10 to 0.1 hPa, parameterization schemes for nonorographic gravity wave tendencies and methane oxidation were introduced, and a new radiation scheme was implemented. Because of the higher lid height of 0.1 hPa, new measurements between 10 and 0.1 hPa were also added. This new high-top system resulted not only in dramatically improved forecasts of the stratosphere, but also in large improvements in medium-range tropospheric forecast skill. Pairs of assimilation experiments reveal that most of the stratospheric and tropospheric forecast improvement is obtained without the extra observations in the upper stratosphere. However, these observations further improve forecasts in the winter hemisphere but not in the summer hemisphere. Pairs of forecast experiments were run in which initial conditions were the same for each experiment but the forecast model differed. The large improvements in stratospheric forecast skill are found to be due to the higher lid height of the new model. The new radiation scheme helps to improve tropospheric forecasts. However, the degree of improvement seen in tropospheric forecast skill could not be entirely explained with these purely forecast experiments. It is hypothesized that the cycling of a better model and assimilation provide improved initial conditions, which result in improved forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3