Rainfall-Induced Changes in Actual Surface Backscattering Cross Sections and Effects on Rain-Rate Estimates by Spaceborne Precipitation Radar

Author:

Seto Shinta1,Iguchi Toshio1

Affiliation:

1. National Institute of Information and Communications Technology, Tokyo, Japan

Abstract

Abstract In this study, the authors used Tropical Rainfall Measuring Mission precipitation radar (TRMM PR) data to investigate changes in the actual (attenuation corrected) surface backscattering cross section (σ0e) due to changes in surface conditions induced by rainfall, the effects of changes in σ0e on the path integrated attenuation (PIA) estimates by surface reference techniques (SRTs), and the effects on rain-rate estimates by the TRMM PR standard rain-rate retrieval algorithm. Over land, σ0e is statistically higher under rainfall than under no rainfall conditions (soil moisture effect) unless the land surface is densely covered by vegetation. Over ocean, the dependence of σ0e on the incident angle differs under rainfall and no-rainfall conditions (wind speed effect). The alongtrack spatial reference (ATSR) method, one of the SRTs used in the standard algorithm, partially considers these effects, while the temporal reference (TR) method, another SRT, never involves these effects; its PIA estimates thus have negative biases over land. In the hybrid spatial reference (HSR) method used over ocean, different incident angles create different biases in PIA estimates. If the TR method is replaced by the ATSR method, the monthly rainfall amount in July 2001 all over the land within the TRMM coverage increases by 0.70%. The bias in the HSR method over ocean can be mitigated by fitting a σ0–θ curve separately to smaller incident angles and to larger incident angles. This improvement increases or decreases the monthly rainfall amounts in individual incident angle regions by up to 10%.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3