The Signature of the Midlatitude Tropospheric Storm Tracks in the Surface Winds

Author:

Booth James F.1,Thompson Lu Anne2,Patoux Jérôme1,Kelly Kathryn A.3,Dickinson Suzanne3

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. School of Oceanography, University of Washington, Seattle, Washington

3. Applied Physics Laboratory, University of Washington, Seattle, Washington

Abstract

Abstract Storm-track analysis is applied to the meridional winds at 10 m and 850 hPa for the winters of 1999–2006. The analysis is focused on the North Atlantic and North Pacific Ocean basins and the Southern Ocean spanning the region south of the Indian Ocean. The spatial patterns that emerge from the analysis of the 850-hPa winds are the typical free-tropospheric storm tracks. The spatial patterns that emerge from the analysis of the surface winds differ from the free-tropospheric storm tracks. The spatial differences between the surface and free-tropospheric storm tracks can be explained by the influence of the spatial variability in the instability of the atmospheric boundary layer. Strongly unstable boundary layers allow greater downward mixing of free-tropospheric momentum (momentum mixing), and this may be the cause of the stronger surface storm tracks in regions with greater instability in the time mean. Principal component analysis suggests that the basin-scale variability that is reflected in the storm-track signature is the same for the free-tropospheric and surface winds. Separating the data based on the boundary layer stability shows that the surface storm track has a local maximum in the region of maximum instability, even when there is no local maximum in the free-tropospheric storm track above the region. The spatial patterns of the surface storm tracks suggest a positive feedback for storm development as follows: 1) an existing storm generates strong free-tropospheric wind variability, 2) the momentum mixing of the unstable boundary layers acts to increase the ocean–atmosphere energy fluxes, and 3) the fluxes precondition the lower atmosphere for subsequent storm development.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3