Sensitivity of Precipitation Phase over the Swiss Alps to Different Meteorological Variables

Author:

Froidurot S.1,Zin I.1,Hingray B.1,Gautheron A.2

Affiliation:

1. Université de Grenoble Alpes, CNRS, IRD, LTHE, Grenoble, France

2. DREAL Rhône-Alpes/Service de Prévision des Crues Alpes du Nord, Grenoble, France

Abstract

Abstract In most meteorological or hydrological models, the distinction between snow and rain is based only on a given air temperature. However, other factors such as air moisture can be used to better distinguish between the two phases. In this study, a number of models using different combinations of meteorological variables are tested to determine their pertinence for the discrimination of precipitation phases. Spatial robustness is also evaluated. Thirty years (1981–2010) of Swiss meteorological data are used, consisting of radio soundings from Payerne as well as present weather observations and surface measurements (mean hourly surface air temperature, mean hourly relative humidity, and hourly precipitation) from 14 stations, including Payerne. It appeared that, unlike surface variables, variables derived from the atmospheric profiles (e.g., the vertical temperature gradient) hardly improve the discrimination of precipitation phase at ground level. Among all tested variables, surface air temperature and relative humidity show the greatest explanatory power. The statistical model using these two variables and calibrated for the case study region provides good spatial robustness over the region. Its parameters appear to confirm those defined in the model presented by Koistinen and Saltikoff.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3