Double-Ridge Internal Tide Interference and Its Effect on Dissipation in Luzon Strait

Author:

Buijsman Maarten C.1,Legg Sonya1,Klymak Jody2

Affiliation:

1. Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

2. University of Victoria, Victoria, British Columbia, Canada

Abstract

Abstract Luzon Strait between Taiwan and the Philippines features two parallel north–south-oriented ridges. The barotropic tides that propagate over these ridges cause strong internal waves and dissipation. The energy dissipation mechanisms and the role of the baroclinic wave fields in this dissipation are investigated using numerical simulations with the Massachusetts Institute of Technology general circulation model (MITgcm). The model is integrated over two-dimensional configurations along a zonal transect at 20.6°N for a maximum duration of a spring–neap cycle. Nearly all dissipation occurs at the steep ridge crests due to high-mode turbulent lee waves with horizontal scales of several kilometers and vertical scales of hundreds of meters. The spatial structure and timing of the predicted velocities and dissipation agree with observations and confirm the existence of these lee waves. The lee wave strength is greatly affected by the internal waves generated at the other ridge. When semidiurnal barotropic tides are dominant, the internal wave beams from both ridges nearly superpose after one surface reflection. The remotely generated internal waves from both ridges are therefore in phase with each other and the barotropic tides at the ridges. The barotropic-to-baroclinic energy conversion, energy flux divergence, ridge top velocities, and dissipation are stronger compared to the sum of the single east ridge and single west ridge cases. When diurnal tides are dominant, the wave fields are more out of phase and the conversion, divergence, and dissipation are less than or equal to the single ridge cases combined.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3