A Surrogate Ensemble Study of Climate Reconstruction Methods: Stochasticity and Robustness

Author:

Christiansen Bo1,Schmith T.1,Thejll P.1

Affiliation:

1. Danish Meteorological Institute, Copenhagen, Denmark

Abstract

Abstract Reconstruction of the earth’s surface temperature from proxy data is an important task because of the need to compare recent changes with past variability. However, the statistical properties and robustness of climate reconstruction methods are not well known, which has led to a heated discussion about the quality of published reconstructions. In this paper a systematic study of the properties of reconstruction methods is presented. The methods include both direct hemispheric-mean reconstructions and field reconstructions, including reconstructions based on canonical regression and regularized expectation maximization algorithms. The study will be based on temperature fields where the target of the reconstructions is known. In particular, the focus will be on how well the reconstructions reproduce low-frequency variability, biases, and trends. A climate simulation from an ocean–atmosphere general circulation model of the period a.d. 1500–1999, including both natural and anthropogenic forcings, is used. However, reconstructions include a large element of stochasticity, and to draw robust statistical interferences, reconstructions of a large ensemble of realistic temperature fields are needed. To this end a novel technique has been developed to generate surrogate fields with the same temporal and spatial characteristics as the original surface temperature field from the climate model. Pseudoproxies are generated by degrading a number of gridbox time series. The number of pseudoproxies and the relation between the pseudoproxies and the underlying temperature field are determined realistically from Mann et al. It is found that all reconstruction methods contain a large element of stochasticity, and it is not possible to compare the methods and draw conclusions from a single or a few realizations. This means that very different results can be obtained using the same reconstruction method on different surrogate fields. This might explain some of the recently published divergent results. Also found is that the amplitude of the low-frequency variability in general is underestimated. All methods systematically give large biases and underestimate both trends and the amplitude of the low-frequency variability. The underestimation is typically 20%–50%. The shape of the low-frequency variability, however, is well reconstructed in general. Some potential in validating the methods on independent data is found. However, to gain information about the reconstructions’ ability to capture the preindustrial level it is necessary to consider the average level in the validation period and not the year-to-year correlations. The influence on the reconstructions of the number of proxies, the type of noise used to generate the proxies, the strength of the variability, as well as the effect of detrending the data prior to the calibration is also reported.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3