North Pacific Climate Response to Freshwater Forcing in the Subarctic North Atlantic: Oceanic and Atmospheric Pathways

Author:

Okumura Yuko M.1,Deser Clara1,Hu Aixue1,Timmermann Axel2,Xie Shang-Ping2

Affiliation:

1. Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

2. International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract Sudden changes of the Atlantic meridional overturning circulation (AMOC) are believed to have caused large, abrupt climate changes over many parts of the globe during the last glacial and deglacial period. This study investigates the mechanisms by which a large freshwater input to the subarctic North Atlantic and an attendant rapid weakening of the AMOC influence North Pacific climate by analyzing four different ocean–atmosphere coupled general circulation models (GCMs) under present-day or preindustrial boundary conditions. When the coupled GCMs are forced with a 1-Sv (Sv ≡ 106 m3 s−1) freshwater flux anomaly in the subarctic North Atlantic, the AMOC nearly shuts down and the North Atlantic cools significantly. The South Atlantic warms slightly, shifting the Atlantic intertropical convergence zone southward. In addition to this Atlantic ocean–atmosphere response, all of the models exhibit cooling of the North Pacific, especially along the oceanic frontal zone, consistent with paleoclimate reconstructions. The models also show deepening of the wintertime Aleutian low. Detailed analysis of one coupled GCM identifies both oceanic and atmospheric pathways from the Atlantic to the North Pacific. The oceanic teleconnection contributes a large part of the North Pacific cooling: the freshwater input to the North Atlantic raises sea level in the Arctic Ocean and reverses the Bering Strait throughflow, transporting colder, fresher water from the Arctic Ocean into the North Pacific. When the Bering Strait is closed, the cooling is greatly reduced, while the Aleutian low response is enhanced. Tropical SST anomalies in both the Atlantic and Pacific are found to be important for the equivalent barotropic response of the Aleutian low during boreal winter. The atmospheric bridge from the tropical North Atlantic is particularly important and quite sensitive to the mean state, which is poorly simulated in many coupled GCMs. The enhanced Aleutian low, in turn, cools the North Pacific by increasing surface heat fluxes and southward Ekman transport. The closure of the Bering Strait during the last glacial period suggests that the atmospheric bridge from the tropics and air–sea interaction in the North Pacific played a crucial role in the AMOC–North Pacific teleconnection.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3