Affiliation:
1. Environmental Science and Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada
2. Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, and State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, China
Abstract
Abstract
El Niño–Southern Oscillation (ENSO) retrospective ensemble-based probabilistic predictions were performed for the period of 1856–2003 using the Lamont-Doherty Earth Observatory, version 5 (LDEO5), model. To obtain more reliable and skillful ENSO probabilistic predictions, first, four ensemble construction strategies were investigated: (i) the optimal initial perturbation with singular vector of sea surface temperature anomaly (SSTA), (ii) the realistic high-frequency anomalous winds, (iii) the stochastic optimal pattern of anomalous winds, and (iv) a combination of the first and the third strategy. Second, verifications were conducted to examine the reliability and resolution of the probabilistic forecasts provided by the four methods. Results suggest that reliability of ENSO probabilistic forecast is more sensitive to the choice of ensemble construction strategy than the resolution, and a reliable and skillful ENSO probabilistic prediction system may not necessarily have the best deterministic prediction skills. Among these ensemble construction methods, the fourth strategy produces the most reliable and skillful ENSO probabilistic prediction, benefiting from the joint contributions of the stochastic optimal winds and the singular vector of SSTA. In particular, the stochastic optimal winds play an important role in improving the ENSO probabilistic predictability for the LDEO5 model.
Publisher
American Meteorological Society
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献