Effect of Mesoscale Eddies on Subtropical Mode Water Variability from the Kuroshio Extension System Study (KESS)

Author:

Qiu Bo1,Chen Shuiming1,Hacker Peter1

Affiliation:

1. Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract Forty-eight profiling floats have been deployed in the Kuroshio Extension (KE) region since May 2004 as part of the Kuroshio Extension System Study (KESS) project. By combining the float temperature–salinity measurements with satellite altimetry data, this study investigates the role played by mesoscale eddies in controlling the property changes in North Pacific Subtropical Mode Water (STMW). Following a 3-yr period of low eddy activity in 2002–04, the KE showed a transition to a high eddy kinetic energy state in 2005. This transition is the result of delayed oceanic response to the 2002 shift in the basin-scale surface wind forcing in connection with the Pacific decadal oscillation. The high eddy kinetic energy state of the KE is characterized by successive shedding of strong cold-core rings into the recirculation gyre, resulting from the interaction of the KE jet with the Shatsky Rise or the preexisting cutoff rings. By transporting northern-origin, high-potential-vorticity (PV) KE water into the recirculation gyre, the enhanced eddy activity affects STMW in two ways: first, it hinders the formation of deep winter mixed layer (hence the source for STMW) by modifying the upper-ocean stratification and, second, it provides a direct high-PV source to mix with the surrounding low-PV STMW. The eddies’ influence upon STMW is observed to be both significant in magnitude and efficient in time. Relative to 2004, the PV signal in the core of STMW was reduced by one-half in 2005, and this weakening of STMW’s intensity occurred within a period of less than 7 months. This result supports recent findings by the authors based on historical temperature data that the variability in STMW formation depends more sensitively on the dynamic state of the KE than on the overlying atmospheric conditions.

Publisher

American Meteorological Society

Subject

Oceanography

Reference37 articles.

1. Formation and spreading of Subtropical Mode Water in the North Pacific.;Bingham;J. Geophys. Res.,1992

2. Comparison of upper ocean thermal conditions in the western North Pacific between two pentads: 1938–42 and 1978–82.;Bingham;J. Oceanogr.,1992

3. Conkright, M. E., R. A.Locarnini, H. E.Garcia, T. D.O’Brien, T. P.Boyer, C.Stephens, and J. I.Antonov, 2002: World Ocean Atlas 2001: Objective analyses, data statistics, and figures. CD-ROM documentation. National Oceanographic Data Center, 17 pp.

4. Understanding the persistence of sea surface temperature anomalies in midlatitude.;Deser;J. Climate,2003

5. Interannual variations in upper ocean heat content and heat transport convergence in the western North Atlantic.;Dong;J. Phys. Oceanogr.,2007

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3