Radiative Forcing of Climate: The Historical Evolution of the Radiative Forcing Concept, the Forcing Agents and their Quantification, and Applications

Author:

Ramaswamy V.1,Collins W.2,Haywood J.3,Lean J.4,Mahowald N.5,Myhre G.6,Naik V.1,Shine K. P.7,Soden B.8,Stenchikov G.9,Storelvmo T.10

Affiliation:

1. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

2. Lawrence Berkeley National Laboratory, and University of California, Berkeley, Berkeley, California

3. University of Exeter, and Met Office, Exeter, United Kingdom

4. U.S. Naval Research Laboratory, Washington, D.C.

5. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

6. Center for International Climate Research, Oslo, Norway

7. Department of Meteorology, University of Reading, Reading, United Kingdom

8. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

9. King Abdulla University of Science and Technology, Thuwal, Jeddah, Saudi Arabia

10. University of Oslo, Oslo, Norway

Abstract

AbstractWe describe the historical evolution of the conceptualization, formulation, quantification, application, and utilization of “radiative forcing” (RF) of Earth’s climate. Basic theories of shortwave and longwave radiation were developed through the nineteenth and twentieth centuries and established the analytical framework for defining and quantifying the perturbations to Earth’s radiative energy balance by natural and anthropogenic influences. The insight that Earth’s climate could be radiatively forced by changes in carbon dioxide, first introduced in the nineteenth century, gained empirical support with sustained observations of the atmospheric concentrations of the gas beginning in 1957. Advances in laboratory and field measurements, theory, instrumentation, computational technology, data, and analysis of well-mixed greenhouse gases and the global climate system through the twentieth century enabled the development and formalism of RF; this allowed RF to be related to changes in global-mean surface temperature with the aid of increasingly sophisticated models. This in turn led to RF becoming firmly established as a principal concept in climate science by 1990. The linkage with surface temperature has proven to be the most important application of the RF concept, enabling a simple metric to evaluate the relative climate impacts of different agents. The late 1970s and 1980s saw accelerated developments in quantification, including the first assessment of the effect of the forcing due to the doubling of carbon dioxide on climate (the “Charney” report). The concept was subsequently extended to a wide variety of agents beyond well-mixed greenhouse gases (WMGHGs; carbon dioxide, methane, nitrous oxide, and halocarbons) to short-lived species such as ozone. The WMO and IPCC international assessments began the important sequence of periodic evaluations and quantifications of the forcings by natural (solar irradiance changes and stratospheric aerosols resulting from volcanic eruptions) and a growing set of anthropogenic agents (WMGHGs, ozone, aerosols, land surface changes, contrails). From the 1990s to the present, knowledge and scientific confidence in the radiative agents acting on the climate system have proliferated. The conceptual basis of RF has also evolved as both our understanding of the way radiative forcing drives climate change and the diversity of the forcing mechanisms have grown. This has led to the current situation where “effective radiative forcing” (ERF) is regarded as the preferred practical definition of radiative forcing in order to better capture the link between forcing and global-mean surface temperature change. The use of ERF, however, comes with its own attendant issues, including challenges in its diagnosis from climate models, its applications to small forcings, and blurring of the distinction between rapid climate adjustments (fast responses) and climate feedbacks; this will necessitate further elaboration of its utility in the future. Global climate model simulations of radiative perturbations by various agents have established how the forcings affect other climate variables besides temperature (e.g., precipitation). The forcing–response linkage as simulated by models, including the diversity in the spatial distribution of forcings by the different agents, has provided a practical demonstration of the effectiveness of agents in perturbing the radiative energy balance and causing climate changes. The significant advances over the past half century have established, with very high confidence, that the global-mean ERF due to human activity since preindustrial times is positive (the 2013 IPCC assessment gives a best estimate of 2.3 W m−2, with a range from 1.1 to 3.3 W m−2; 90% confidence interval). Further, except in the immediate aftermath of climatically significant volcanic eruptions, the net anthropogenic forcing dominates over natural radiative forcing mechanisms. Nevertheless, the substantial remaining uncertainty in the net anthropogenic ERF leads to large uncertainties in estimates of climate sensitivity from observations and in predicting future climate impacts. The uncertainty in the ERF arises principally from the incorporation of the rapid climate adjustments in the formulation, the well-recognized difficulties in characterizing the preindustrial state of the atmosphere, and the incomplete knowledge of the interactions of aerosols with clouds. This uncertainty impairs the quantitative evaluation of climate adaptation and mitigation pathways in the future. A grand challenge in Earth system science lies in continuing to sustain the relatively simple essence of the radiative forcing concept in a form similar to that originally devised, and at the same time improving the quantification of the forcing. This, in turn, demands an accurate, yet increasingly complex and comprehensive, accounting of the relevant processes in the climate system.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Oceanography

Reference1712 articles.

1. Cloud feedbacks in the climate system: A critical review;Stephens;J. Climate,2005

2. Stratospheric aerosol retrieval with OSIRIS limb scatter measurements;Bourassa;J. Geophys. Res.,2007

3. Stratosphere-troposphere exchange;Holton;Rev. Geophys.,1995

4. The photochemistry of atmospheric water vapor;Bates;J. Geophys. Res.,1950

5. AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6;Collins;Geosci. Model Dev.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3