The Atmospheric Moisture Residence Time and Reference Time for Moisture Tracking over China

Author:

Wang Ning1,Zeng Xin-Min2,Zheng Yiqun3,Zhu Jian3,Jiang Shanhu3

Affiliation:

1. College of Hydrology and Water Resources, Hohai University, and College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, Jiangsu, China

2. College of Hydrology and Water Resources, Hohai University, and Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China

3. College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu, China

Abstract

Abstract This paper studies the atmospheric moisture residence times over China for the period 1980–2009 using the dynamic recycling model (DRM). We define both the residence times for atmospheric moisture of precipitation (backward tracking) and evaporation (forward tracking) and show that each has significant spatial and seasonal variations. The area-averaged precipitation-moisture residence time is approximately 8.3 days, while the evaporation residence time is approximately 6.3 days. In addition, we investigate the concept of “tracking time” or time selected for moisture tracking in numerical source–sink studies. The area-averaged backward and forward tracking times at the 90% threshold (i.e., when 90% of initial moisture is attributed for tracking) are approximately 22 and 15 days, respectively. Finally, we theoretically deduced the explicit expressions for residence and tracking times for idealized cases and found the analytical proportional relationship between these times. In this way, the analytical link between residence time and e-folding time was reestablished. This proportional relationship was further verified against the DRM-derived values. In the DRM results, the proportional relation generally fluctuates along the trajectory, which leads to the differences between the theoretical and the DRM-derived values. These results can enhance our understanding of water cycling, and they are likely to help choose tracking times in relevant studies.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3