Automated Retrieval of Cloud and Aerosol Properties from the ARM Raman Lidar. Part I: Feature Detection

Author:

Thorsen Tyler J.1,Fu Qiang1,Newsom Rob K.2,Turner David D.3,Comstock Jennifer M.2

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. Pacific Northwest National Laboratory, Richland, Washington

3. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

AbstractA feature detection and extinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement Program’s (ARM) Raman lidar (RL) has been developed. Presented here is Part I of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitrogen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio—to identify features using range-dependent detection thresholds. FEX is designed to be context sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities provides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically thin features containing nonspherical particles, such as cirrus clouds. Improvements over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia, site. While the focus is on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3