Utility-Scale Wind Turbine Wake Characterization Using Nacelle-Based Long-Range Scanning Lidar

Author:

Aitken Matthew L.1,Lundquist Julie K.2

Affiliation:

1. Department of Physics, University of Colorado Boulder, Boulder, Colorado

2. Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, and National Renewable Energy Laboratory, Golden, Colorado

Abstract

Abstract To facilitate the optimization of turbine spacing at modern wind farms, computational simulations of wake effects must be validated through comparison with full-scale field measurements of wakes from utility-scale turbines operating in the real atmosphere. Scanning remote sensors are particularly well suited for this objective, as they can sample wind fields over large areas at high temporal and spatial resolutions. Although ground-based systems are useful, the vantage point from the nacelle is favorable in that scans can more consistently transect the central part of the wake. To the best of the authors’ knowledge, the work described here represents the first analysis in the published literature of a utility-scale wind turbine wake using nacelle-based long-range scanning lidar. The results presented are of a field experiment conducted in the fall of 2011 at a wind farm in the western United States, quantifying wake attributes such as the velocity deficit, centerline location, and wake width. Notable findings include a high average velocity deficit, decreasing from 60% at a downwind distance x of 1.8 rotor diameters (D) to 40% at x = 6D, resulting from a low average wind speed and therefore a high average turbine thrust coefficient. Moreover, the wake width was measured to expand from 1.5D at x = 1.8D to 2.5D at x = 6D. Both the wake growth rate and the amplitude of wake meandering were observed to be greater for high ambient turbulence intensity and daytime conditions as compared to low turbulence and nocturnal conditions.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3