The Design and Development of an Irish Sea Passenger-Ferry-Based Oceanographic Measurement System

Author:

Balfour C. A.1,Howarth M. J.1,Jones D. S.1,Doyle T.1

Affiliation:

1. National Oceanography Centre, Liverpool, United Kingdom

Abstract

Abstract An evolving coastal observatory has been hosted by the National Oceanography Centre at Liverpool, United Kingdom, for more than nine years. Within this observatory an instrumented ferry system has been developed and operated to provide near-surface scientific measurements of the Irish Sea. Passenger vessels such as ferries have the potential to be used as cost-effective platforms for gathering high-resolution regular measurements of the properties of near-surface water along their routes. They are able to operate on an almost year-round basis, and they usually have a high tolerance to adverse weather conditions. Examples of the application of instrumented ferry systems include environmental monitoring, the generation of long-term measurement time series, the provision of information for predictive model validation, and data for model assimilation purposes. This paper discusses the development of an engineering system installed on board an Irish Sea passenger ferry. Particular attention is paid to explaining the engineering development required to achieve a robust, automated measuring system that is suitable for long-term continuous operation. The ferry, operating daily between Birkenhead and Belfast or Dublin, United Kingdom, was instrumented between December 2003 and January 2011 when the route was closed. Measurements were recorded at a nominal interval of 100 m and real-time data were transmitted every 15 min. The quality of the data was assessed. The spatial and temporal variability of the temperature and salinity fields are investigated as the ferry crosses a variety of shelf sea and coastal water column types.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference29 articles.

1. Cost-effective remote data acquisition and instrumentation management for oceanographic and environmental monitoring applications;Balfour;Oper. Oceanogr.,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3