Uncertainty and Intercalibration Analysis of H*Wind

Author:

DiNapoli Steven M.1,Bourassa Mark A.1,Powell Mark D.2

Affiliation:

1. Center for Ocean-Atmospheric Prediction Studies, and Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida

2. Center for Ocean-Atmospheric Prediction Studies, The Florida State University, Tallahassee, and NOAA/Atlantic Oceanographic and Meteorological Laboratories/Hurricane Research Division, Miami, Florida

Abstract

Abstract The Hurricane Research Division (HRD) Real-time Hurricane Wind Analysis System (H*Wind) is a software application used by NOAA’s HRD to create a gridded tropical cyclone wind analysis based on a wide range of observations. These analyses are used in both forecasting and research applications. Although mean bias and RMS errors are listed, H*Wind lacks robust uncertainty information that considers the contributions of random observation errors, relative biases between observation types, temporal drift resulting from combining nonsimultaneous measurements into a single analysis, and smoothing and interpolation errors introduced by the H*Wind analysis. This investigation seeks to estimate the total contributions of these sources, and thereby provide an overall uncertainty estimate for the H*Wind product. A series of statistical analyses show that in general, the total uncertainty in the H*Wind product in hurricanes is approximately 6% near the storm center, increasing to nearly 13% near the tropical storm force wind radius. The H*Wind analysis algorithm is found to introduce a positive bias to the wind speeds near the storm center, where the analyzed wind speeds are enhanced to match the highest observations. In addition, spectral analyses are performed to ensure that the filter wavelength of the final analysis product matches user specifications. With increased knowledge of bias and uncertainty sources and their effects, researchers will have a better understanding of the uncertainty in the H*Wind product and can then judge the suitability of H*Wind for various research applications.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3