Impact of Assimilating Underwater Glider Data on Hurricane Gonzalo (2014) Forecasts

Author:

Dong Jili12,Domingues Ricardo34,Goni Gustavo4,Halliwell George4,Kim Hyun-Sook12,Lee Sang-Ki4,Mehari Michael34,Bringas Francis4,Morell Julio5,Pomales Luis5

Affiliation:

1. I. M. System Group, Inc., Rockville, Maryland

2. Marine Modeling and Analysis Branch, NOAA/Environmental Modeling Center, College Park, Maryland

3. Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

4. Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

5. Department of Marine Sciences, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico

Abstract

Abstract The initialization of ocean conditions is essential to coupled tropical cyclone (TC) forecasts. This study investigates the impact of ocean observation assimilation, particularly underwater glider data, on high-resolution coupled TC forecasts. Using the coupled Hurricane Weather Research and Forecasting (HWRF) Model–Hybrid Coordinate Ocean Model (HYCOM) system, numerical experiments are performed by assimilating underwater glider observations alone and with other standard ocean observations for the forecast of Hurricane Gonzalo (2014). The glider observations are able to provide valuable information on subsurface ocean thermal and saline structure, even with their limited spatial coverage along the storm track and the relatively small amount of data assimilated. Through the assimilation of underwater glider observations, the prestorm thermal and saline structures of initial upper-ocean conditions are significantly improved near the location of glider observations, though the impact is localized because of the limited coverage of glider data. The ocean initial conditions are best represented when both the standard ocean observations and the underwater glider data are assimilated together. The barrier layer and the associated sharp density gradient in the upper ocean are successfully represented in the ocean initial conditions only with the use of underwater glider observations. The upper-ocean temperature and salinity forecasts in the first 48 h are improved by assimilating both underwater glider and standard ocean observations. The assimilation of glider observations alone does not make a large impact on the intensity forecast due to their limited coverage along the storm track. The 126-h intensity forecast of Hurricane Gonzalo is improved moderately through assimilating both underwater glider data and standard ocean observations.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3