Affiliation:
1. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
Abstract
Proactive quality control (PQC) is a fully flow-dependent QC for observations based on the ensemble forecast sensitivity to observations technique (EFSO). It aims at reducing the forecast skill dropout events suffered in operational numerical weather prediction by rejecting observations identified as detrimental by EFSO. Past studies show that individual dropout cases from the Global Forecast System (GFS) were significantly improved by noncycling PQC. In this paper, we perform for the first time cycling PQC experiments in a controlled environment with the Lorenz model to provide a systematic testing of the new method and possibly shed light on the optimal configuration of operational implementation. We compare several configurations and PQC update methods. It is found that PQC improvement is insensitive to the suboptimal configurations in DA, including ensemble size, observing network size, model error, and the length of DA window, but the improvements increase with the flaws in observations. More importantly, we show that PQC improves the analysis and forecast even in the absence of flawed observations. The study reveals that reusing the exact same Kalman gain matrix for PQC update not only provides the best result but requires the lowest computational cost among all the tested methods.
Funder
JPSS Proving Ground and Risk Reduction
Publisher
American Meteorological Society
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献