Determination of Spatiotemporal Variability of the Indian Equatorial Intermediate Current

Author:

Chen Gengxin12,Han Weiqing3,Zhang Xiaolin3,Liang Linlin1,Xue Huijie1,Huang Ke12,He Yunkai1,Li Jian1,Wang Dongxiao4

Affiliation:

1. a State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

2. b Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

3. c Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

4. d School of Marine Sciences, Sun Yat-sen University, Guangzhou, China

Abstract

AbstractUsing 4-yr mooring observations and ocean circulation model experiments, this study characterizes the spatial and temporal variability of the Equatorial Intermediate Current (EIC; 200–1200 m) in the Indian Ocean and investigates the causes. The EIC is dominated by seasonal and intraseasonal variability, with interannual variability being weak. The seasonal component dominates the midbasin with a predominant semiannual period of ~166 days but weakens toward east and west where the EIC generally exhibits large intraseasonal variations. The resonant second and fourth baroclinic modes at the semiannual period make the largest contribution to the EIC, determining the overall EIC structures. The higher baroclinic modes, however, modify the EIC’s vertical structures, forming multiple cores during some time periods. The EIC intensity has an abrupt change near 73°E, which is strong to the east and weak to the west. Model simulation suggests that the abrupt change is caused primarily by the Maldives, which block the propagation of equatorial waves. The Maldives impede the equatorial Rossby waves, reducing the EIC’s standard deviation associated with reflected Rossby waves by ~48% and directly forced waves by 20%. Mode decomposition further demonstrates that the semiannual resonance amplitude of the second baroclinic mode reduces by 39% because of the Maldives. However, resonance amplitude of the four baroclinic mode is less affected, because the Maldives fall in the node region of mode 4’s resonance. The research reveals the spatiotemporal variability of the poorly understood EIC, contributing to our understanding of equatorial wave–current dynamics.

Funder

NFSC

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixed Rossby Gravity Waves at Middepths of the Equatorial Indian Ocean;Journal of Physical Oceanography;2024-08

2. Indian Ocean circulation;The Indian Ocean and its Role in the Global Climate System;2024

3. The Indian Ocean Observing System (IndOOS);The Indian Ocean and its Role in the Global Climate System;2024

4. Annual Cycle in Upper-Ocean Heat Content and the Global Energy Budget;Journal of Climate;2023-08-01

5. Dual-Frequency Wind-Driven Mixed Rossby–Gravity Waves in the Equatorial Indian Ocean;Journal of Physical Oceanography;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3