Surface gravity wave effects on submesoscale currents in the open ocean

Author:

Hypolite Delphine1,Romero Leonel2,McWilliams James C.1,Dauhajre Daniel P.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California.

2. Department of Marine Sciences, University of Connecticut, Groton, Connecticut.

Abstract

AbstractA set of realistic coastal simulations in California allows for the exploration of surface gravity wave effects on currents (WEC) in an active submesoscale current regime. We use a new method that takes into account the full surface gravity wave spectrum and produces larger Stokes drift than the monochromatic peak-wave approximation. We investigate two high wave events lasting several days — one from a remotely generated swell and another associated with local wind-generated waves — and perform a systematic comparison between solutions with and without WEC at two submesoscale-resolving horizontal grid resolutions (dx = 270 m and 100 m). WEC results in the enhancement of open-ocean surface density and velocity gradients when the averaged significant wave height HS is relatively large (> 4.2m). For smaller waves, WEC is a minor effect overall. For the remote swell (strong waves and weak winds), WEC maintains submesoscale structures and accentuates the cyclonic vorticity and horizontal convergence skewness of submesoscale fronts and filaments. The vertical enstrophy ζ2 budget in cyclonic regions (ζ/f > 2) reveals enhanced vertical shear and enstrophy production via vortex tilting and stretching. Wind-forced waves also enhance surface gradients, up to the point where they generate a small-submesoscale roll-cell pattern with high vorticity and divergence that extends vertically through the entire mixed layer. The emergence of these roll-cells results in a buoyancy gradient sink near the surface that causes a modest reduction in the typically large submesoscale density gradients.

Publisher

American Meteorological Society

Subject

Oceanography

Reference136 articles.

1. Two-dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large-scale deformation;Nagai;J. Geophys. Res.,2006

2. The role of horizontal divergence in submesoscale frontogenesis;Barkan;J. Phys. Oceanogr.,2019

3. Inertial ranges in two-dimensional turbulence;Kraichnan;Phys. Fluids,1967

4. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization;Large;Rev. Geophys.,1994

5. Understanding Stokes forces in the wave-averaged equations;Suzuki;J. Geophys. Res. Oceans,2016

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3