On the Decay of Tropical Cyclone Winds Crossing Narrow Landmasses

Author:

DeMaria Mark1,Knaff John A.2,Kaplan John3

Affiliation:

1. Office of Research and Applications, NOAA/NESDIS, Fort Collins, Colorado

2. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

3. Hurricane Research Division, Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, Florida

Abstract

Abstract A method is developed to adjust the Kaplan and DeMaria tropical cyclone inland wind decay model for storms that move over narrow landmasses. The basic assumption that the wind speed decay rate after landfall is proportional to the wind speed is modified to include a factor equal to the fraction of the storm circulation that is over land. The storm circulation is defined as a circular area with a fixed radius. Application of the modified model to Atlantic Ocean cases from 1967 to 2003 showed that a circulation radius of 110 km minimizes the bias in the total sample of landfalling cases and reduces the mean absolute error of the predicted maximum winds by about 12%. This radius is about 2 times the radius of maximum wind of a typical Atlantic tropical cyclone. The modified decay model was applied to the Statistical Hurricane Intensity Prediction Scheme (SHIPS), which uses the Kaplan and DeMaria decay model to adjust the intensity for the portion of the predicted track that is over land. The modified decay model reduced the intensity forecast errors by up to 8% relative to the original decay model for cases from 2001 to 2004 in which the storm was within 500 km from land.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3