The Effect of Ice Nuclei Efficiency on Arctic Mixed-Phase Clouds from Large-Eddy Simulations

Author:

Fu Shizuo1,Xue Huiwen1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Abstract

Abstract The effects of ice nuclei (IN) efficiency on the persistent ice formation in Arctic mixed-phase clouds (AMCs) are investigated using a large-eddy simulation model, coupled to a bin microphysics scheme with a prognostic IN formulation. In the three cases where the IN efficiency is high, ice formation and IN depletion are fast. When the IN concentration is 1 and 10 g−1, IN are completely depleted and the cloud becomes purely liquid phase before the end of the 24-h simulation. When the IN concentration is 100 g−1, the IN supply is sufficient but the liquid water is completely consumed so that the cloud dissipates quickly. In the three cases when the IN efficiency is low, ice formation is negligible in the first several hours but becomes significant as the temperature is decreased through longwave cooling. Before the end of the simulation, the cloud is in mixed phase when the IN concentration is 1 and 10 g−1 but dissipates when the IN concentration is 100 g−1. In the case where two types of IN are considered, ice formation persists throughout the simulation. Analysis shows that as the more efficient IN are continuously removed through ice formation, the less efficient IN gradually nucleate more ice crystals because the longwave cooling decreases the cloud temperature. This mechanism is further illustrated with a simple model. These results indicate that a spectrum of IN efficiency is necessary to maintain the persistent ice formation in AMCs.

Funder

Chinese 973 project

Chinese NSF

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3