Ensemble Tropical Rainfall Potential (eTRaP) Forecasts

Author:

Ebert Elizabeth E.1,Turk Michael2,Kusselson Sheldon J.2,Yang Jianbin2,Seybold Matthew2,Keehn Peter R.3,Kuligowski Robert J.3

Affiliation:

1. Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia

2. NOAA/NESDIS/OSDPD, Camp Springs, Maryland

3. NOAA/NESDIS/STAR, Camp Springs, Maryland

Abstract

Abstract Ensemble tropical rainfall potential (eTRaP) has been developed to improve short-range forecasts of heavy rainfall in tropical cyclones. Evolving from the tropical rainfall potential (TRaP), a 24-h rain forecast based on estimated rain rates from microwave sensors aboard polar-orbiting satellites, eTRaP combines all single-pass TRaPs generated within ±3 h of 0000, 0600, 1200, and 1800 UTC to form a simple ensemble. This approach addresses uncertainties in satellite-derived rain rates and spatial rain structures by using estimates from different sensors observing the cyclone at different times. Quantitative precipitation forecasts (QPFs) are produced from the ensemble mean field using a probability matching approach to recalibrate the rain-rate distribution against the ensemble members (e.g., input TRaP forecasts) themselves. ETRaPs also provide probabilistic forecasts of heavy rain, which are potentially of enormous benefit to decision makers. Verification of eTRaP forecasts for 16 Atlantic hurricanes making landfall in the United States between 2004 and 2008 shows that the eTRaP rain amounts are more accurate than single-sensor TRaPs. The probabilistic forecasts have useful skill, but the probabilities should be interpreted within a spatial context. A novel concept of a “radius of uncertainty” compensates for the influence of location error in the probability forecasts. The eTRaPs are produced in near–real time for all named tropical storms and cyclones around the globe. They can be viewed online (http://www.ssd.noaa.gov/PS/TROP/etrap.html) and are available in digital form to users.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3