Edge effects on biomass, growth, and tree diversity of a degraded peatland in West Kalimantan, Indonesia

Author:

ASTIANI DWI,CURRAN LISA M.,MUJIMAN MUJIMAN,RATNASARI DESSY,SALIM RUSPITA,LISNAWATY NELLY

Abstract

Astiani D, Curran LM, Mujiman, Ratnasari D, Salim R, Lisnawaty N. 2018. Edge effects on biomass, growth, and tree diversity of a degraded peatland in West Kalimantan, Indonesia. Biodiversitas 19: 272-278. Tropical forested peatlands in Indonesia are threatened by logging and clearing which reduce their ecosystem functions and degrade the environment. Land use change activities disturbed intact forests, resulted in landscape fragmentation. Scattered forest matrices resulted in forest edge areas, which will considerably affect the forest biotic and abiotic conditions, as well as forest tree dynamics within the edge sites. The goal of this study was to investigate the effect of forest edge on perimeter of the forest fragment on the forest biomass stock, growth, tree basal area as well as species composition, richness and abundance in a degraded peatland forest in West Kalimantan. A twelve-ha forest was divided into 35 plots in the interior forest and 13 at the forest edge; each plot was 50 m by 50 m in size based on their abiotic conditions such as light and temperatures. Leaf Area Index (LAI) was measured in each plot of both forest edge and interior sites using Licor-2100. The results indicated that even though the biomass levels maintained relatively moderate to high levels on both sites, forest edge significantly lowered forest biomass by 32%, reduced 23-25% of tree-biomass growth per unit area for both tree diameter of 10-20 cm and >20 cm. There was a shift of tree species composition, 76 species were found on both sites, 24 species were not found in edge site, but present in the interior site and 10 species were found only in edge site. Peatland forest matrix created forest edges that are lowering peatland forest roles in sequestering carbon per unit area and reducing species diversity. Peatland forest restoration should be conducted to reduce forest matrices and to lower the edge effects.

Publisher

UNS Solo

Subject

Plant Science,Molecular Biology,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3