China's CCUS Progresses and a New Evaluation Method of CO2 Storage Capacity in Coalbed Reservoirs

Author:

Jiang Kai1,Dou Hong'en2,Shen Pingping2,Sun Tao2

Affiliation:

1. China University of Geosciences

2. RIPED

Abstract

Carbon Capture Utilization and Storage (CCUS) is playing a significant role in dealing with the global climate change, such as CO2 Injects into coal bed reservoirs, it is proved that CCUS technology not only definitely reduce CO2 emissions, but also enhance coal bed methane (ECBM).Coalbed methane resources are very rich in China, its resources ranks the third in the world. The coal structure of coalbed methane reservoirs are very complicated, experimental results show that methane content is not the same between low coal rank and high coal rank, therefore, desorption and absorption laws of CO2 for two different coal ranks are obviously different. This study point out weaknesses of evaluation methods both at home and abroad, show clearly what problems existing in the previous evaluation results based on the actual production situations of China's coal bed methane. The new modified method has been used to estimate on operable capacity, practical capacity, effective capacity as well as theoretical capacity in coalbed basin of the whole China. The research takes fully into account the influence of various factors including proved ratio, replacement ratio of CO2 to CH4, recovery ratio, ash content and moisture, completion factor, efficient pores volume, gas saturation, etc. While estimating CO2 storage capacity, the proved ratio is deemed to a key factor influencing estimates. The authors think that not all the coal bed methane reservoirs can be used for CO2 storage and ECBM. According to actual situation of engineering practice, this paper forecasts the future of coalbed methane recovery, and then it is the first time to put forward that the depth limitation of the coal bed methane reservoirs. At present, CO2 store depth of 300m to 1000m is unreasonable because of the coal resources will be used by underground coal gasification technology. The new methods give full consideration to the reasonable depth of CBM reservoir. Experimental results show that CO2 / CH4 adsorption ratio is different along with the depth of reservoirs. CO2 storage capacities of China coalbed basins are calculated by using the method, the results exhibit CO2 accumulated operable capacity and practical capacity.

Publisher

CMTC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3