Author:
Darmawan Hendri,Yuliana Mike,Samsono Hadi Moch. Zen
Abstract
Weather is essential to human life, but it is difficult to forecast due to its diverse nature. We evaluated and compared the accuracy of two machine learning algorithms, GRU and XGBoost, in predicting weather patterns. We used GridSearchCV to tune the hyperparameters for the GRU algorithm and Bayesian optimization for the XGBoost algorithm. We used regression to predict weather sensor data and classification to predict rainfall in the following four days. We then deployed the best-performing model to the cloud server and connected it to the local IoT device with weather sensors in Sedati, Sidoarjo Regency, Indonesia. We conducted tests using data from the BMKG Juanda Sidoarjo and data from the local IoT device. The findings indicated that the XGBoost regression model outperformed the GRU model in the first stage, with an average RMSE of 1.2728125. In comparison, the average RMSE for GRU regression was 1.551666667. In the second stage, however, GRU regression performed better, with an average RMSE of 2.23, while the XGBoost regression had 2.28. In the classification tests, the GRU model had a higher F1 score of 0.88 in the first stage, while the XGBoost classification was 0.86. Both models had the same accuracy of 0.75 when tested with IoT data. However, the GRU classification model was better since it considered the context of the prediction, resulting in a lower likelihood of rain when it was not raining.
Subject
General Engineering,General Agricultural and Biological Sciences,General Computer Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献