Metabolic Gene Expression in Fetal and Failing Human Heart

Author:

Razeghi Peter1,Young Martin E.1,Alcorn Joseph L.1,Moravec Christine S.1,Frazier O.H.1,Taegtmeyer Heinrich1

Affiliation:

1. From the Division of Cardiology (P.R., M.E.Y., H.T.) and the Department of Pediatrics (J.L.A.), University of Texas-Houston Medical School, and St Luke’s Episcopal Hospital and Texas Heart Institute (O.H.F., H.T.), Houston, Tex; and the Center for Anesthesiology Research, Cleveland Clinic Foundation, Cleveland, Ohio (C.S.M.).

Abstract

Background Previous studies suggest that the failing heart reactivates fetal genes and reverts to a fetal pattern of energy substrate metabolism. We tested this hypothesis by examining metabolic gene expression profiles in the fetal, nonfailing, and failing human heart. Methods and Results Human left ventricular tissue (apex) was obtained from 9 fetal, 10 nonfailing, and 10 failing adult hearts. Using quantitative reverse transcription-polymerase chain reaction, we measured transcript levels of atrial natriuretic factor, myosin heavy chain-α and -β, and 13 key regulators of energy substrate metabolism, of which 3 are considered “adult” isoforms (GLUT4, mGS, mCPT-I) and 3 are considered “fetal” isoforms (GLUT1, lGS, and lCPT-I), primarily through previous studies in rodent models. Compared with the nonfailing adult heart, steady-state mRNA levels of atrial natriuretic factor were increased in both the fetal and the failing heart. The 2 myosin heavy chain isoforms showed the highest expression level in the nonfailing heart. Transcript levels of most of the metabolic genes were higher in the nonfailing heart than the fetal heart. Adult isogenes predominated in all groups and always showed a greater induction than the fetal isogenes in the nonfailing heart compared with the fetal heart. In the failing heart, the expression of metabolic genes decreased to the same levels as in the fetal heart. Conclusions In the human heart, metabolic genes exist as constitutive and inducible forms. The failing adult heart reverts to a fetal metabolic gene profile by downregulating adult gene transcripts rather than by upregulating fetal genes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 515 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3