Aldosterone-Induced Coronary Dysfunction in Transgenic Mice Involves the Calcium-Activated Potassium (BKCa) Channels of Vascular Smooth Muscle Cells

Author:

Ambroisine Marie-Lory1,Favre Julie1,Oliviero Patricia1,Rodriguez Camille1,Gao Ji1,Thuillez Christian1,Samuel Jane-Lise1,Richard Vincent1,Delcayre Claude1

Affiliation:

1. From Inserm U689 and Paris Diderot University, Paris (M.L.A., P.O., C.R., J.L.S., C.D.), and Inserm U644 and Institute for Biomedical Research, Rouen University Hospital, Rouen (J.F., J.G., C.T., V.R.), France.

Abstract

Background— Cardiomyocyte-specific overexpression of aldosterone synthase in male (MAS) mice induces a nitric oxide–independent coronary dysfunction. Because calcium-activated potassium (BKCa) channels are essential for vascular smooth muscle cell (VSMC) relaxation, we hypothesized that aldosterone alters their expression and/or function in VSMCs. Methods and Results— Left coronary artery segments were isolated from MAS or male wild-type mice and mounted in a wire myograph. Responses to acetylcholine were assessed (in the presence of a nitric oxide synthase inhibitor) without or with the cyclooxygenase inhibitor diclofenac, the KCa inhibitors charybdotoxin plus apamin, or the BKCa inhibitor iberiotoxin. Expression of BKCa was quantified in hearts by real-time quantitative polymerase chain reaction and Western blot and in isolated coronary arteries by polymerase chain reaction. The effect of aldosterone on BKCa expression also was studied in cultured rat aortic VSMCs. Acetylcholine-mediated coronary relaxation was markedly decreased in MAS mice and was prevented by spironolactone. Diclofenac did not affect the MAS-induced impairment in the responses to acetylcholine, whereas charybdotoxin plus apamin virtually abolished the relaxation in both male wild-type and MAS mice. After iberiotoxin, relaxation to acetylcholine was decreased to a larger extent in male wild-type than in MAS, leading to similar levels of relaxation. BKCa-α and -β1 subunit expressions were significantly decreased in MAS heart and coronary arteries. In cultured VSMCs, aldosterone induced a concentration-dependent decrease in BKCa expression, which was prevented by spironolactone. Conclusions— Aldosterone overexpression altered VSMC BKCa expression and coronary BKCa-dependent relaxation. The resulting alteration of relaxing responses may contribute to the deleterious effects of aldosterone in cardiovascular diseases. BKCa channels may therefore be useful therapeutic targets in cardiovascular diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3