Heart-Specific Immune Responses in an Animal Model of Autoimmune-Related Myocarditis Mitigated by an Immunoproteasome Inhibitor and Genetic Ablation

Author:

Bockstahler Mariella1,Fischer Andrea1,Goetzke Carl Christoph23,Neumaier Hannah Louise2,Sauter Martina4,Kespohl Meike23,Müller Anna-Maria1,Meckes Christin1,Salbach Christian1,Schenk Mirjam5,Heuser Arnd6,Landmesser Ulf73,Weiner January8,Meder Benjamin19,Lehmann Lorenz1910,Kratzer Adelheid73,Klingel Karin4,Katus Hugo A.19,Kaya Ziya19,Beling Antje23ORCID

Affiliation:

1. Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany (M.B., A.F., A.-M.M., C.M., C.S., B.M., L.L., H.A.K., Z.K.).

2. Institute of Biochemistry (C.C.G., H.L.N., M.K., A.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Germany.

3. Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Berlin, Germany (C.C.G., M.K., U.L., A.K., A.B.).

4. Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Germany (M.S., K.K.).

5. Institute of Pathology, University of Bern, Switzerland (M.S.).

6. Core Unit Pathophysiology (A.H.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.

7. Medizinische Klinik für Kardiologie Campus Benjamin Franklin (U.L., A.K.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Germany.

8. Core Unit Bioinformatics (J.W.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.

9. Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Heidelberg/Mannheim, Heidelberg, Germany (B.M., L.L., H.A.K., Z.K.).

10. Cardio-Oncology Unit, University Hospital of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany (L.L.).

Abstract

Background: Immune checkpoint inhibitor (ICI) therapy is often accompanied by immune-related pathology, with an increasing occurrence of high-risk ICI-related myocarditis. Understanding the mechanisms involved in this side effect could enable the development of management strategies. In mouse models, immune checkpoints, such as PD-1 (programmed cell death protein 1), control the threshold of self-antigen responses directed against cardiac TnI (troponin I). We aimed to identify how the immunoproteasome, the main proteolytic machinery in immune cells harboring 3 distinct protease activities in the LMP2 (low-molecular-weight protein 2), LMP7 (low-molecular-weight protein 7), and MECL1 (multicatalytic endopeptidase complex subunit 1) subunit, affects TnI-directed autoimmune pathology of the heart. Methods: TnI-directed autoimmune myocarditis (TnI-AM), a CD4 + T-cell–mediated disease, was induced in mice lacking all 3 immunoproteasome subunits (triple-ip −/− ) or lacking either the gene encoding LMP2 and LMP7 by immunization with a cardiac TnI peptide. Alternatively, before induction of TnI-AM or after establishment of autoimmune myocarditis, mice were treated with the immunoproteasome inhibitor ONX 0914. Immune parameters defining heart-specific autoimmunity were investigated in experimental TnI-AM and in 2 cases of ICI-related myocarditis. Results: All immunoproteasome-deficient strains showed mitigated autoimmune-related cardiac pathology with less inflammation, lower proinflammatory and chemotactic cytokines, less interleukin-17 production, and reduced fibrosis formation. Protection from TnI-directed autoimmune heart pathology with improved cardiac function in LMP7 −/− mice involved a changed balance between effector and regulatory CD4 + T cells in the spleen, with CD4 + T cells from LMP7 /− mice showing a higher expression of inhibitory PD-1 molecules. Blocked immunoproteasome proteolysis, by treatment of TLR2 (Toll-like receptor 2)–engaged and TLR7 (Toll-like receptor 7)/TLR8 (Toll-like receptor 8)–engaged CD14 + monocytes with ONX 0914, diminished proinflammatory cytokine responses, thereby reducing the boost for the expansion of self-reactive CD4 + T cells. Correspondingly, in mice, ONX 0914 treatment reversed cardiac autoimmune pathology, preventing the induction and progression of TnI-AM when self-reactive CD4 + T cells were primed. The autoimmune signature during experimental TnI-AM, with high immunoproteasome expression, immunoglobulin G deposition, interleukin-17 production in heart tissue, and TnI-directed humoral autoimmune responses, was also present in 2 cases of ICI-related myocarditis, demonstrating the activation of heart-specific autoimmune reactions by ICI therapy. Conclusions: By reversing heart-specific autoimmune responses, immunoproteasome inhibitors applied to a mouse model demonstrate their potential to aid in the management of autoimmune myocarditis in humans, possibly including patients with ICI-related heart-specific autoimmunity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3