Single-Cell Reconstruction of Progression Trajectory Reveals Intervention Principles in Pathological Cardiac Hypertrophy

Author:

Ren Zongna12,Yu Peng1,Li Dandan1,Li Zheng1,Liao Yingnan1,Wang Yin1,Zhou Bingying1,Wang Li12ORCID

Affiliation:

1. State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Z.R., P.Y., D.L., Z.L., Y.L., Y.W., B.Z., L.W.).

2. Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen (Z.R., L.W.).

Abstract

Background: Pressure overload–induced pathological cardiac hypertrophy is a common predecessor of heart failure, the latter of which remains a major cardiovascular disease with increasing incidence and mortality worldwide. Current therapeutics typically involve partially relieving the heart’s workload after the onset of heart failure. Thus, more pathogenesis-, stage-, and cell type–specific treatment strategies require refined dissection of the entire progression at the cellular and molecular levels. Methods: By analyzing the transcriptomes of 11,492 single cells and identifying major cell types, including both cardiomyocytes and noncardiomyocytes, on the basis of their molecular signatures, at different stages during the progression of pressure overload–induced cardiac hypertrophy in a mouse model, we characterized the spatiotemporal interplay among cell types, and tested potential pharmacological treatment strategies to retard its progression in vivo. Results: We illustrated the dynamics of all major cardiac cell types, including cardiomyocytes, endothelial cells, fibroblasts, and macrophages, as well as those of their respective subtypes, during the progression of disease. Cellular crosstalk analysis revealed stagewise utilization of specific noncardiomyocytes during the deterioration of heart function. Specifically, macrophage activation and subtype switching, a key event at middle-stage of cardiac hypertrophy, was successfully targeted by Dapagliflozin, a sodium glucose cotransporter 2 inhibitor, in clinical trials for patients with heart failure, as well as TD139 and Arglabin, two anti-inflammatory agents new to cardiac diseases, to preserve cardiac function and attenuate fibrosis. Similar molecular patterns of hypertrophy were also observed in human patient samples of hypertrophic cardiomyopathy and heart failure. Conclusions: Together, our study not only illustrated dynamically changing cell type crosstalk during pathological cardiac hypertrophy but also shed light on strategies for cell type- and stage-specific intervention in cardiac diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3