In Vivo Function of Flow-Responsive Cis-DNA Elements of eNOS Gene: A Role for Chromatin-Based Mechanisms

Author:

Ku Kyung Ha12ORCID,Dubinsky Michelle K.32ORCID,Sukumar Aravin N.32ORCID,Subramaniam Noeline32ORCID,Feasson Manon Y.M.12,Nair Ranju12,Tran Eileen1,Steer Brent M.2,Knight Britta J.1,Marsden Philip A.1324ORCID

Affiliation:

1. Department of Laboratory Medicine and Pathobiology (K.H.K., M.Y.M.F., R.N., E.T., B.J.K., P.A.M.)

2. Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute (K.H.K., M.K.D., A.N.S., N.S., M.Y.M.F., R.N., B.M.B., P.A.M.)

3. Institute of Medical Science (M.K.D., A.N.S., N.S., P.A.M.) University of Toronto, Ontario, Canada.

4. Department of Medicine (P.A.M.), St Michael’s Hospital, Toronto, Ontario, Canada.

Abstract

Background: eNOS (endothelial nitric oxide synthase) is an endothelial cell (EC)–specific gene predominantly expressed in medium- to large-sized arteries where ECs experience atheroprotective laminar flow with high shear stress. Disturbed flow with lower average shear stress decreases eNOS transcription, which leads to the development of atherosclerosis, especially at bifurcations and curvatures of arteries. This prototypic arterial EC gene contains 2 distinct flow-responsive cis-DNA elements in the promoter, the shear stress response element (SSRE) and the KLF (Krüppel-like factor) element. Previous in vitro studies suggested their positive regulatory functions on flow-induced transcription of EC genes including eNOS. However, the in vivo function of these cis-DNA elements remains unknown. Methods: Insertional transgenic mice with a mutation at each flow-responsive cis-DNA element were generated using a murine eNOS promoter–β-galactosidase reporter by linker-scanning mutagenesis and compared with episomal-based mutations in vitro. DNA methylation at the eNOS proximal promoter in mouse ECs was assessed by bisulfite sequencing or pyrosequencing. Results: Wild type mice with a functional eNOS promoter–reporter transgene exhibited reduced endothelial reporter expression in the atheroprone regions of disturbed flow (n=5). It is surprising that the SSRE mutation abrogated reporter expression in ECs and was associated with aberrant hypermethylation at the eNOS proximal promoter (n=7). Reporter gene silencing was independent of transgene copy number and integration position, indicating that the SSRE is a critical cis-element necessary for eNOS transcription in vivo. The KLF mutation demonstrated an integration site–specific decrease in eNOS transcription, again with marked promoter methylation (n=8), suggesting that the SSRE alone is not sufficient for eNOS transcription in vivo. In wild type mice, the native eNOS promoter was significantly hypermethylated in ECs from the atheroprone regions where eNOS expression was markedly repressed by chronic disturbed flow, demonstrating that eNOS expression is regulated by flow-dependent DNA methylation that is region-specific in the arterial endothelium in vivo. Conclusions: We report, for the first time, that the SSRE and KLF elements are critical flow sensors necessary for a transcriptionally permissive, hypomethylated eNOS promoter in ECs under chronic shear stress in vivo. Moreover, eNOS expression is regulated by flow-dependent epigenetic mechanisms, which offers novel mechanistic insight on eNOS gene regulation in atherogenesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3