Affiliation:
1. From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
Abstract
Background—
The impact of diabetes mellitus on the cardiac regenerative potential of cardiac stem cells (CSCs) is unknown yet critical, given that individuals with diabetes mellitus may well require CSC therapy in the future. Using human and murine CSCs from diabetic cardiac tissue, we tested the hypothesis that hyperglycemic conditions impair CSC function.
Methods and Results—
CSCs cultured from the cardiac biopsies of patients with diabetes mellitus (hemoglobin A1c, 10±2%) demonstrated reduced overall cell numbers compared with nondiabetic sourced biopsies (
P
=0.04). When injected into the infarct border zone of immunodeficient mice 1 week after myocardial infarction, CSCs from patients with diabetes mellitus demonstrated reduced cardiac repair compared with nondiabetic patients. Conditioned medium from CSCs of patients with diabetes mellitus displayed a reduced ability to promote in vitro blood vessel formation (
P
=0.02). Similarly, conditioned medium from CSCs cultured from the cardiac biopsies of streptozotocin-induced diabetic mice displayed impaired angiogenic capacity (
P
=0.0008). Somatic gene transfer of the methylglyoxal detoxification enzyme, glyoxalase-1, restored the angiogenic capacity of diabetic CSCs (diabetic transgenic versus nondiabetic transgenic;
P
=0.8). Culture of nondiabetic murine cardiac biopsies under high (25 mmol/L) glucose conditions reduced CSC yield (
P
=0.003), impaired angiogenic (
P
=0.02) and chemotactic (
P
=0.003) response, and reduced CSC-mediated cardiac repair (
P
<0.05).
Conclusions—
Diabetes mellitus reduces the ability of CSCs to repair injured myocardium. Both diabetes mellitus and preconditioning CSCs in high glucose attenuated the proangiogenic capacity of CSCs. Increased expression of glyoxalase-1 restored the proangiogenic capacity of diabetic CSCs, suggesting a means of reversing diabetic CSC dysfunction by interfering with the accumulation of reactive dicarbonyls.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献