Activation of the ATF6 (Activating Transcription Factor 6) Signaling Pathway in Neurons Improves Outcome After Cardiac Arrest in Mice

Author:

Shen Yuntian1ORCID,Li Ran1,Yu Shu1,Zhao Qiang1ORCID,Wang Zhuoran1,Sheng Huaxin1,Yang Wei1ORCID

Affiliation:

1. Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC

Abstract

Background Ischemia/reperfusion injury impairs proteostasis, and triggers adaptive cellular responses, such as the unfolded protein response (UPR), which functions to restore endoplasmic reticulum homeostasis. After cardiac arrest (CA) and resuscitation, the UPR is activated in various organs including the brain. However, the role of the UPR in CA has remained largely unknown. Here we aimed to investigate effects of activation of the ATF6 (activating transcription factor 6) UPR branch in CA. Methods and Results Conditional and inducible sATF6‐KI (short‐form ATF6 knock‐in) mice and a selective ATF6 pathway activator 147 were used. CA was induced in mice by KCl injection, followed by cardiopulmonary resuscitation. We first found that neurologic function was significantly improved, and neuronal damage was mitigated after the ATF6 pathway was activated in neurons of sATF6‐KI mice subjected to CA/cardiopulmonary resuscitation. Further RNA sequencing analysis indicated that such beneficial effects were likely attributable to increased expression of pro‐proteostatic genes regulated by ATF6. Especially, key components of the endoplasmic reticulum–associated degradation process, which clears potentially toxic unfolded/misfolded proteins in the endoplasmic reticulum, were upregulated in the sATF6‐KI brain. Accordingly, the CA‐induced increase in K48‐linked polyubiquitin in the brain was higher in sATF6‐KI mice relative to control mice. Finally, CA outcome, including the survival rate, was significantly improved in mice treated with compound 147. Conclusions This is the first experimental study to determine the role of the ATF6 UPR branch in CA outcome. Our data indicate that the ATF6 UPR branch is a prosurvival pathway and may be considered as a therapeutic target for CA.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3