Control by Circulating Factors of Mitochondrial Function and Transcription Cascade in Heart Failure

Author:

Garnier Anne1,Zoll Joffrey1,Fortin Dominique1,N'Guessan Benoît1,Lefebvre Florence1,Geny Bernard1,Mettauer Bertrand1,Veksler Vladimir1,Ventura-Clapier Renée1

Affiliation:

1. From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France.

Abstract

Background— Evidence is emerging to support the concept that the failing heart is “energy depleted” and that defects in energy metabolism are important determinants in the development and the progression of the disease. We have shown previously that depressed mitochondrial function in cardiac and skeletal muscles in chronic heart failure is linked to decreased expression of the gene encoding transcriptional proliferator-activated receptor-γ coactivator-1α, the inducible regulator of mitochondrial biogenesis and its transcription cascade, leading to altered expression of mitochondrial proteins. However, oxidative capacity of the myocardium of patients treated for chronic heart failure and pathophysiological mechanisms of mitochondrial dysfunction are still largely unknown. Methods and Results— In patients with chronic heart failure treated with angiotensin-converting enzyme inhibition, cardiac oxidative capacity, measured in saponin-permeabilized fibers, was 25% lower, and proliferator-activated receptor-γ coactivator-1α protein content was 34% lower compared with nonfailing controls. In a rat model of myocardial infarction, angiotensin-converting enzyme inhibition therapy was only partially able to protect cardiac mitochondrial function and transcription cascade. Expression of proliferator-activated receptor-γ coactivator-1α and its transcription cascade were evaluated after a 48-hour exposure of cultured adult rat ventricular myocytes to endothelin-1, angiotensin II, aldosterone, phenylephrine, or isoprenaline. Endothelin-1 (−30%) and, to a lesser degree, angiotensin II (−20%) decreased proliferator-activated receptor-γ coactivator-1α mRNA content, whereas other hormones had no effect (phenylephrine) or even increased it (aldosterone, isoprenaline). Conclusions— Taken together, these results show that, despite angiotensin-converting enzyme inhibition treatment, oxidative capacity is reduced in human and experimental heart failure and that endothelin-1 and angiotensin II could be involved in the downregulation of the mitochondrial transcription cascade.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3